Want to Become a Sponsor? Contact Us Now!🎉

LLM
Mistral Ai Function Calling

对于给定的用户查询,MistralAI模型需要生成调用外部工具所需的参数。这个过程涉及将用户查询的意图与在JSON模式中定义的函数描述和参数进行匹配。

  • 首先,MistralAI将解析用户查询,提取关键信息。
  • 然后,MistralAI将使用在步骤1中定义的工具的JSON模式,确定所需的参数。
  • 最后,MistralAI将生成包含所需参数的列表或对象,并传递给相应的函数。

以下是一个示例,演示了生成函数参数的过程:

def generate_function_arguments(user_query, function_schema):
    # 解析用户查询
    parsed_query = parse_user_query(user_query)
 
    # 根据查询和函数模式确定所需参数
    required_parameters = function_schema['function']['parameters']['required']
    function_arguments = {}
 
    for parameter in required_parameters:
        if parameter in parsed_query:
            function_arguments[parameter] = parsed_query[parameter]
        else:
            function_arguments[parameter] = None
 
    return function_arguments
 
# 使用示例:
user_query = "What is the payment status of transaction XYZ?"
function_schema = {
    "type": "function",
    "function": {
        "name": "retrieve_payment_status",
        "description": "Get payment status of a transaction",
        "parameters": {
            "type": "object",
            "properties": {
                "transaction_id": {
                    "type": "string",
                    "description": "The transaction id."
                }
            },
            "required": ["transaction_id"]
        }
    }
}
function_arguments = generate_function_arguments(user_query, function_schema)

在这个示例中,用户查询是"What is the payment status of transaction XYZ?"。根据函数模式,该查询涉及检索一个交易的支付状态,并需要一个名为"transaction_id"的参数。generate_function_arguments函数将生成一个包含"transaction_id"参数的字典,并将其返回。如果查询中没有提供必需的参数,相应的参数值将为None。

Step 3: Function is Called

The Mechanics of Calling External Functions

With the function arguments in hand, MistralAI is ready to call the specified function. It passes the arguments to the corresponding function, triggering its execution. The function can perform any necessary computations, interact with external tools or databases, and return the desired information or perform the requested task.

Here's an example of how MistralAI calls the retrieve_payment_status function:

def retrieve_payment_status(transaction_id):
    # 查询并获取交易的支付状态
    payment_status = query_payment_status(transaction_id)
 
    return payment_status
 
# 调用函数
payment_status = retrieve_payment_status(**function_arguments)

In this example, the retrieve_payment_status function takes a transaction_id parameter and queries the payment status of the transaction. The function uses the query_payment_status function (not shown here) to retrieve the payment status. The function returns the payment status as a result.

Step 4: Model Uses Function Result

Using the Function Result in MistralAI Models

After the function is called and the result is obtained, MistralAI can incorporate the function's output into its response to the user. This allows MistralAI to provide personalized and real-time information based on the function's execution.

For example, if the user query was "What is the payment status of transaction XYZ?", MistralAI can use the result of the retrieve_payment_status function to generate the following response: "The payment status of transaction XYZ is 'pending'."

MistralAI can also use the function result as input for subsequent queries or for further processing within the model.

Practical Examples

Let's explore some practical examples of how MistralAI's function calling feature can be applied to solve real-world problems:

  1. Weather Information: MistralAI can call a weather API to fetch real-time weather data based on the user's location and provide personalized weather updates.
  2. Real-Time Stock Prices: By integrating with a stock market API, MistralAI can retrieve and analyze real-time stock prices to provide up-to-date information and insights to users.
  3. Database Integration: MistralAI can interact with databases to fetch, query, and update data, making it a powerful tool for data management and analysis.
  4. Integration with Natural Language Processing Libraries: MistralAI can invoke external natural language processing libraries or models to perform more advanced language-related tasks, such as sentiment analysis or language translation.

These are just a few examples of the wide range of possibilities enabled by MistralAI's function calling feature. The ability to connect AI models with external tools and databases opens up new avenues for innovation and practical applications.

Conclusion

MistralAI's function calling feature empowers AI models to tap into external tools and databases, enabling them to go beyond traditional text generation and interact with the world in meaningful ways. By seamlessly integrating with external functionalities, MistralAI can provide up-to-date information, perform complex tasks, and tailor its capabilities to fit specific use cases. The process of function calling involves defining tools and their schemas, generating function arguments, calling the functions, and incorporating the results into the model's responses. With this capability, MistralAI can solve real-world problems and elevate the user experience in various domains.

Start exploring the transformative power of MistralAI's function calling feature today and unlock a new level of AI applications. 一旦确定了适当的函数,MistralAI会生成执行函数所需的必要参数。这就像在决定要做什么菜之后收集食谱所需的配料。

# 用户查询:“我的交易 T1001 的状态是什么?”
# MistralAI 生成:{"transaction_id": "T1001"}

第三步:用户执行函数以获取结果

用户在执行函数中的角色

在确定函数及其参数后,就到了执行的时候,就像打开火炉开始烹饪。这个执行目前由用户(或用户的系统)执行,涉及调用指定的函数并使用提供的参数来获取结果。

# 执行函数
function_result = names_to_functions['retrieve_payment_status'](transaction_id="T1001")

函数在服务器端执行的潜力

展望未来,令人兴奋的是,MistralAI有潜力直接处理函数的执行,通过自动化现在是手动步骤来进一步简化流程。

第四步:模型生成最终答案

Mistral模型如何使用输出生成定制的最终响应

随着函数执行并拿到结果,MistralAI会根据用户的查询定制一个最终的响应。这一步类似于将烹饪好的食材摆盘,让它们准备好被享用。

# 根据输出 '{"status": "Paid"}',MistralAI 可以生成一个响应:
"您的交易 T1001 的状态是 'Paid'。"

通过这四个步骤,MistralAI的函数调用将一个简单的查询转化为可行动的见解,利用外部工具和数据库提供准确且个性化的响应。这个过程具有合并人工智能与现实世界数据的特点,为开发者和企业创造了新的有机会,使他们能够创建更加动态、响应灵敏和智能的应用。

实际示例:支付状态查询

在MistralAI中进行函数调用的过程可能看起来很复杂,但一旦你深入实际的示例中,它会自然而然地展开。让我们探索一下如何使用集成了LangChain的MistralAI来查询支付状态。

逐步操作

第一步:设置您的环境

首先,确保您具备使用MistralAI与LangChain集成所需的设置:

npm install @langchain/mistralai

这个命令为您的项目设置了使用MistralAI的模型,通过LangChain这个简化与AI模型和外部工具交互的框架。

第二步:定义工具

假设您有一个基于交易ID检查付款状态的函数:

def check_payment_status(transaction_id):
    # 模拟数据库查询
    payment_records = {
        "T1001": "Paid",
        "T1002": "Pending",
        "T1003": "Failed",
    }
    return payment_records.get(transaction_id, "Not Found")

第三步:将函数与LangChain集成

为了使这个函数通过MistralAI可调用,将它定义为LangChain中的一个StructuredTool

from langchain.llms import StructuredTool
from zod import z
 
class PaymentStatusTool(StructuredTool):
    name = "check_payment_status"
    description = "Checks the payment status for a given transaction ID."
    schema = z.object({
        "transaction_id": z.string(),
    })
 
    async def _call(self, input):
        status = check_payment_status(input["transaction_id"])
        return {"status": status}

第四步:查询模型

有了您定义的工具,现在可以查询模型了。下面是如何使用LangChain设置一个简单交互的示例:

from langchain.llms import ChatMistralAI
from langchain.prompts import ChatPromptTemplate
 
# 假设您已经设置了API密钥和模型
model = ChatMistralAI(api_key="YOUR_API_KEY", model_name="mistral-small")
model.bind_tools([PaymentStatusTool()])
 
prompt = ChatPromptTemplate.from_messages([
    ["system", "您是一个可以查询付款状态的助手。"],
    ["human", "交易 T1001 的状态是什么?"],
])
 
response = await model.chat(prompt)
print("Response:", response)

这个设置向MistralAI发送了一个消息,指示用户请求检查付款状态。模型识别出结构化工具及其功能后,执行函数来检索状态并返回响应。

将外部工具与MistralAI集成

在MistralAI中进行函数调用的更广泛含义,特别是与LangChain等框架集成时,无疑具有深远影响:

  • 增强型互动:除了简单的文本生成,您的AI模型现在可以与数据库、API和自定义逻辑进行交互,使它们变得非常灵活。
  • 可定制的工作流程:您可以根据特定需求调整AI的能力,从客户服务机器人检查订单状态到管理日程的个人助理。
  • 可扩展的解决方案:随着您的数据来源和工具的发展,您的MistralAI集成可以与其一起成长,适应新的需求和机会。

通过LangChain,MistralAI的函数调用变得更加可访问,使开发人员能够以较少的障碍编织复杂的基于AI的应用程序。这种集成打开了一个全新的世界,AI不仅仅是生成文本,它以以前只存在于想象中的方式进行互动、解决问题和提供协助。

结论

在我们渡过了MistralAI函数调用的复杂性之后,从定义工具和查询到执行函数和生成响应,显然人工智能的能力范围正在扩大。通过实际示例和与外部工具的集成,我们看到了如何将人工智能转变为一个能够与世界实时交互的动态实体,提供个性化和可操作的见解。MistralAI与LangChain等框架的集成不仅简化了这些交互,还为各个领域的创新应用铺平了道路。作为开发者和创新者,我们站在人工智能新时代的边缘,我们的创造物不仅可以理解和生成文本,还可以采取行动、分析和提供帮助,使我们更加接近将人工智能无缝融入我们日常生活的目标。

想了解最新的LLM新闻吗?点击查看最新的LLM排行榜

Anakin AI - The Ultimate No-Code AI App Builder